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of the applications, the context switch overhead, and the inherent latency of the machine
architecture. Given reasonably low overhead hardware context switchesu we show that two

or four contexts can achieve substantial performance gains over a single context. For one
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Abstract shared data or when a watchdog counter of 1000 expires.
This simple scheme helps keep context switch overhead low.

A fundamental problegi that any scalable multiprocessor because the decision to switch or not can be made in a single
must address i- the ability* to tolerate high latency memory , .cycle. , .. ..

operations. This paper explores the extent to which multi- Our multiple context scheme is evaluated using multipro-
pIe hardware contexts per processor can help to mitigate the cessor memory-reference traces obtained frdni three applica-
iiemative effects of high latency. In particular. we evaluate tions (13.16.20]. The results indicate that multiple contexts
the performa,,ce of a director.%-based cache coherent multi- can achieve substantial gains in processor utilization. In some
processor usinz memory reference traces obtained from three cases processor utilization is increased by 65% with two con-
parallel application.s. We explore the case where there are texts and by 100% with four contexts.
a small fixed number i 2-4) of hardware contexts per proces- The rest of the paper is organized as follows. The next
,or and the context switch overhead is low. In contrast to section presents the architecture and simulator used in this
previously proposed approaches. we also use a very simple study. We also introduce the applications and the method
context-switch criterion, namely a cache miss or a write-hitto shared data. Our results show that the effectiveness of employed to gather the reference traces. Section 3 gives gen-
totipe donaet. Odends ho thatreo the apictivens• eral results for the three applications. After that we present
hultiple contexts depends on the nature of the applications, a number of issues concerning multiple contexts. This section

the context switch overhead, and the inherent latency of the also gives the results of the simulations. Finally, we have the
machine architecture. Given reasonably low overhead hard- related work. discussion and conclusion sections.
ware context switches, we show that two or four contexts can
achieve substantial performance gains over a single context.
For one application. the processor utilization increased by
about ,55' with two contexts and by about 100%4 with four 2 Architectural Assumptions
contexts. and Simulation Environment

1 Introduction In this section. we discus- the architectural assumptions that
'ye make and describe the simulation environment that we
used to obtain our results. We also describe the applications

As shared-memory multiprocessors are scaled (the number of used in this study and the performance metric employed to
processors is increased), there will invariably be an increase evaluate the'multiple context scheme.
in the latency of memory operations. While local memory
references need not have higher latency, remote memory op-
:.rations will encounter higher latency because of the larger 2.1 Base Architecture and Simulator
physical size of the machine, if not for any other reason. Con-
-equently. there will always be times when a processor sits Figure 1 shows the basic architecture that we assume in this
idle. waiting for some remote operation to complete (2.11]. If paper. The architecture consists of several nodes linked to-
-nore than one cohtext resides on each processor. and con- gether by an interconnection network. Each node has a pro-
text switch overhead is low. this idle time can be used by cessor, a physical cache. and its share of the global memory.
additional contexts. Typically each context corresponds to a It is connected to the network through the directory iDIR)
process front one parallel program, and network interface (N.I.h. The processors may have one

InI thi paper. we evaluate the utility of mutiple contexts or more contexts. The caches are kept consisten tising a
per thicsr for a directory-hased cache coherent inultipro. directory-hased cache coherence protocol as disc ws"et in (I).

per pro1.sdfr or a de a ch thren multip ro- We study the performance as a function of several parameters,'essor (I]. \Vhile the idea of using multiple hardwvare stcia h ionenfcnets-h otx sic vred
texts per processor is itself not new. we believe our scheme is such lat the number of contexso , the context swich overhead,

,iunpler to implement than other proposals (4.8.11.11,.21] (dis- Ihe latency of lie network, adso on. Perfortance testits
r'used in Section 1), In our scheme. each processor contains as a function of the above parameters are given i Secition 4,
a small hxed numher (.-41 of hardware contexts with intle- t The watchdog counter h intrnbtc¢d to pr,vnt o csat.x

pendent register "is to e11able short context switch times, from bogging a partieular prlahe%,skr, This ensur. that nM COtttIt
W\' aklo use i very simple context stwitch criterion. which is rwm fnr huner than W0 cyrles at a tim, pt i\ gtaa ia
to .,witcht contexts on a cache ntiss or on a write.hit to read. Andi doadlocks,
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Operatiou TilleMemory Latency ( cycles

CACHE Bus Transfer 4 cycles
Switch Latency 2 cycles

BUSM o 60* Bus MEMORY Switch Transfer 4 cycles
Directory Lookup 2 cycles

Table 1: Default Parameters for Simulator

_ _ _ _ _N __WO _ _ texts per processor. For runs with fewer than four contexts.
only some of the reference streams were used. We model the

Fi,-ure 1: Architectural model scaling of the machine architecture to a larger number of pro-
cessors by increasing the latency in the underlying network
(see Section 4.3). We also vary the context switch overhead

We use a trace-driveit simulator. written b. Truman Joe and the number of contexts per processor. Section 4 will
at Stanford. that emulates the above architecture to evaluate present the issues involved and the results obtained.
rite etfectiveness of multiple contexts. [n the .-ingle context One inaccuracy in our simulator is that we assume an in-
per proce..',or case. the simulator works as follows. Before finite cache for each processor., Thus. we do not model the
,tarting the ,iiulatioi. we hrst divide the interleaved refer- interference in tie caches when there are multiple contexts
etuce trearn zenerated by the tracing program into separate per processor. It is not clear. though, whether the sharing
-t.reams Jor individual proces.ors. Then. one reference stream of caches is an advantage or a disadvantagv. If the caches
i, a,-ignted to each of the processors. At every imulated clock are small. interference might be a serious problem. With
cycle. t-ach active processor reads the next reference from its fairly large caches, however, the pre-fetch achieved by con-
a,,.ociated reference stream. If the reference hits in the cache2  texts working on the same shared data could actually be
the processor remains active and vill issue another reference beneficial.' The caches in the architecture presented here
from the streatm on the next clock tick. However. if it misses are expected to be large as they serve as the main source of
or a write to read-shared data occurs. it context switches. remote code and data.
The cache sends a request over the network to fetch the miss-
iii, line and/or update the state of the other caches in the
*ystem. During the period of time that the cache request is 2.2 Traces and Applications
waiting to be satisfied. the processor remains in a suspended
statee muiprocessor traces used in our simulations were gath-ered on a VAX 8350. using a combined hardware/software

in ca.-e of multiple contexts per processor. we have multi- scheme [5]. Basically. the tracing works as follows. We
pie memory reference streams asociated with each processor spawn as many processes as the application desires under
- one for each context. At any given time only one of these the control of a master process. The master process then
contexts is active and the memory references come from that single steps the application processes in a round-robin man-
-tream. However, when the active context enters the sus- ner. After each step. it records all references made by the
pended state due to a cache miss or a write hit on read-shared application processes. For each reference, the number of the
data. a context switch occurs. The processor tas idle for processor producing it. the address of the reference and its
the time required to perform the context switch. After that. type (read/write/ifetch) are recorded. The traces that we use
memory references are issued from the newly activated con- correspond to 16-processor runs.
text. If more than one context is ready when the active con-
text blocks, a round-robin scheduling scheme decides which The traces used were obtained from three applications: Lo-
context is to be activated next. cusRoute. MP3D and P-Thor. LocusRoute (16.17] is a stan-

dard cell global route. While the tasks spawned by it are
The simulator that we use is quite detailed in that it models quite coarse in granularity (each may execute around 100.000

contention for tihe memory modules. for the bus on which instructions), its central data structure (a global cost array)
tie memory modules reside. for the directory. associated with is shared at a fine granularity. N1P3D [13] is a 3-dimensional
,ach node. and for the inte'iconnection nerwork. It is also particle simulator that determines tie shock waves generated
posgible to vary the delays associated with each of the above by a body flying at high speed in the upper atmosphere. It
,ticdules. \Ve noie that the interconnection network assumed uses distributed loops for parallelization (each loop executes
iii our simulati~ns is a crossbar switch. but it could be any around 250 instructions) and it is a typical example of par-
poiit-to-point network -e.g., grid [18]. butterfly (3]. otnega allel scientific code. P-Thor [20] is a parallel logic simulator
:1t,]' depending on tie number of processors we wished to that uses the Chandy-Misra distributed simulatiot algorithm.
ititerconnect. For tie default parameters that we used (shown Each parallel subtask (a component evaluationl in P-Thor
i, rable 11. a remote read takes -7 cycles and a remote write takes about :111 instructions to execute.
takes 19 cyrles with no contention. The local operations take
I: and 13: cycles respectively. With contention these numbers '\We are workintg on an a new version of the simulator that will
can grow to as larue as l]00 cycles in our sinulations. remove tis restriction,

4Note that in olur execktion mewlel, severkl proefts ifm the
The .simulator is driven hy multiprocessor tuemory refer- smeit application aret using the niultipleconexts, Thus the alat

,-nce traces. Since the traces include 1I6 reference streams, we tif Ahared data can he signifieant.
.Irf. limited to four processors if we wish to explore four con-

-Fcr wrlte*. the icat ih i h too Is omned in addition to Ibeltng
pr,ent in the ear..,



2.3 Performance Measure pIE% de to' a iew very long runs the averages are high even
though the median values are' inuch lower.

T he- imaui fi-re of merit uted it evaluating jitij tiple co next--. N1P3D has the shortest run-length and longest latencies.in Itis paper is prct..o 'ci This i. lefined as then rh iw. TLere is a lot of global data traffic in MP3D and this leadi
n useful work over the total tum- to frequent misses. i.e. short run lengths. LocusRoute. on

her of cYcle,. Of course, the maximum is one reference per the other hand has very long run-lengths. Tlte large size
process.or per cycle for WIVA' efficiency. The more time tileprocessor ped ile. for ting for e ienc. Theas tnrite. of the tasks and their relative independence allows for largeproce.sors spetd idle. waiting for remote reads and writes." portions of code that execute out of the cache without any
the lower the overall processor efficiency. In our simulations. misses. The latencies are close to the minimum expected for
we rau, the sYvtein for a total of 5io.0f) clock cycles. and then this architecture. P-Thor is somewhere in between the other
counted ili e number of imemory references consumed front the t applications.
traces to et the efficiency. As the switch latency increases. the read and write laten-

cies grow as well. Reads are affected more because they
3 General Results require a two-way transaction and so the higher latency isincurred twice. Run lengths should be unaffected by the in-

creased latency. but in fact we do see a slight decrease in
In this section we present some general results obtained with run lengths as the switch latency increases. This is proba-
the sinitilator. The-e results give ait overall idea of tie differ- bly due to a cold-start effect of the caches. Run-lengths near
ences in behavior of the three applications. They also show the beginning of the reference streams are shorter on average.
thne effect of increasing the switch latency on the read and because more cache minsses are incurred.
write latencies seen bY the processors. The numbers are for
a 4-processor .,ystem with one context per processor. The
tables below ive data about the run lengths and latencies 4 Issues and Results
for the three applications. Run length is defined as the num-
her of simulator cycles between each cache miss.' Read and
write latencies -.re the number of cycles required to satisfy We wish to explore several questions concerning the perfor-
the cache miss. mance of multiple contexts:

Results for switch latencie- of 2 and 16 cycles are presented. * How many contexts are required to achieve good pro-
A switch latencv of otly two cycles is close to the minimum cessor utilization?
that can be achieved with any type of network. The switchtatcall of 1acheredetsithe altpe ones twmorh. be expected * How does the context switch overhead affect the per-latency of 16 represents the latencies that might formance?in a larger multiprocessor with many more nodes.

. What is the effect of increasing the switch latency?

_ Run Length Read Ltncy Write Ltncv * When to switch contexts?

Applcation 11 Avc IMed il Avg I Med 1 Avg I .Med] * How much does the performance vary with application?
MPJ?.L) 11 I11 1 *- 1)F 1
P-Thor 11 -" 1 4 1 2 " 7 17 19 This section explores all of these issues and presents results.

LocuThore *i -,1 4 1it -- 4- 27 We show graphs of processor efficiency. In each graph. we areLocusP, ouie ! 7 t 45 '24 27 1T 19 plotting the number of active cycles over the total number of
cycles against the switch latency of the architecture. We show

Table 2: General application results with switch latency efficiencies for one. two and four contexts. Different context
of 2 cycles switch overheads are presented on different graphs. Figures

-2-4 show results for MP3D. Figures 5-7 give results for P-
Thor and Figures 8-10 show results for LocusRoute.

f i lt Length Read Ltncy Write Ltncy
Applca.io Av *ed Avg I Nl5d1 1 4.1 Number of Contexts.M1P3iD 1, 14 531 .55 :33 :33 1

P- Ilhor 1,1 17 4 .3.5 ; :3 3d Depending on the single context processor efficiency, it ma
Locusi'.oute JJ H -[ J-1 .j.j j7 0 or may not be worthwhile to use two. four or more contexts.

Note that the single-processor efficiency is basically a func-
Table 3: General application results with switch latency tion of the cache miss rate and the read and write latenc for
of 1i6 cycles the architecture. For LocusRoute (Figures 8-101 the proceA.

sor efficiency is already very high (about 90%) with a single
context and little performance can be gained by adding moreBothaveageatudnieiat vaues re ive to onvy nore con texts. As a matter of fact, if the cotntext switch o\'erhead

information cotceriting the distribution of tie run-lengths contexts o worse the one witch lthePD
aud latencies. Median values are more representative inl char- is high. four contexts do worse than oe (Figur 10leo MM

on the other hand (Figure.2). has sittgle context perorntaace;cterizing ilie typical run-length. ln LocusRoute. for exam- near .50n' aud achieves sustantial gais with more coliexts

B'rth here and in the rpst (if the paper. by rrach mika we ac- (efficiency is 77' with 2, 9h4' with 4),
iunal l mean referetices thai can not be satibfied by the cache alone As expected, the graphs show diminishing argilnall rtlrnl
wit ippl t ic arre-k- i lie ineinory. or th e net work. or baith. Theie in- u lie tnumber of contexts is ittereased (see Figure 3 or $a t
,'hile rlnh" ca,:hie rnisAes but aso, write-hit tn read-shared data.
hi ih latter rase, tie ,uetwrirk n-.i.4 Itn Ie arreseel in inivalidate ample), In every ease going from one to two comt . ,t yld. a,
I li h.,cat i,,i froin either vephnes and in gain eiwnerslip 4,f that cache grea, er heitefit thait g hai fromN to to (owr co ut,-. A smnai
hie, it i itlher of cott eXl s Is also hrefrahle hecause it allow Ptnkt
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A 100 ' ... •.. " ,
.. .. .. .. ................-- - --- hardware. \Vith a larger numher of contexts. a penalty in the

cycle time of tile processor or ani increase in conlext switclt-

.,verhead may be inevitable. Also. a large number of contexts
M.. , tquires a large number of processes. Many applications may

so .;ot he able to support such a large number of processes.

oS
4.2 Context Switch Overhead

30 The context switch overhead depends on the number of con-

20 t c. ens texts kept in hardware. the amount of state kept for each
1 CA"010 context. and the amount, of hardware dedicated to context

10 ,.witching. We explore context switch overheads of 1. 4 and
1 12 14 16 cycles. A sigle cycle overhead can be achieved by keep-

0 2 4 * S 10 12 14 16

Swtch aMncy (bus cycm) mig multiple copies of the pipeline registers and being able
to swap in the whole state in a single cycle.' If the pipeline

FiMt ire S: LoculsRout.e: (on"text Switci Overhead I Cycle has to he drained and filled, a 4-cycle overhead is reasonable.
Both of these options require multiple register banks. one for
each context. If we want to Joad and store the registers to
some fast local memory. we have to allow at least 16 cycles.
It is clear that the hardware is more complex if we require the
context switch to be faster. Of course. beyond some overhead

S100 - value, multiple contexts do not help any; more. since a long
go .. latency operation will complete before the context switch is

- -" -"achieved.

As expected, the results show that the effect of increasing
us70 -the context switch overhead reduces the benefit achieved by

having multiple contexts. Note that the single context graph
line is identical for various context switch overheads (see Fig-

0 0ures 2-4 for example). since there is no context switching in
0 that case. When the context switch overhead is 16. none of

the programs are gaining much processor efficiency with in-
< -0 4CfOMAS creased contexts. MP3D achieves a 12'A increase in efficiency

20 ..... _ 2cort- with 4 contexts (Figure 4). P-Thor gains only .5% (Figure 7)

10 IComa and LocusRoute actually looses 12% (Figure 10). For mul-
12.. L tiple contexts to be useful. the context switch overhead will

0 2 o a 0 12 14 is have to be kept low. preferably on the order of a few cycles.
Switch Latncy (bus cycles)

Fi,.,ure 9: LocusRoute: Context Switch Overhead 4 Cy- 4.3 Latency
cles The amount of latency incurred in remote operations is im-

portant for the effectiveness of processors with multiple con-
texts. With very low latencies. context switch overhead may
be too large to allow multiple contexts to achieve any per-
formance gain. As the latency increases, the single context

100 -. processors do increasingly poorly because more and more pro-
-- .----- cessor time is spent idle. This is where multiple contexts can

S90 - . ....
S- ...- 0 help. As seen in Figures 5-7. the relative value of multiple
2o . ".contexts increases as the latency increases. In other words,

=70 a processor with mltiple contexts will suffer less efficiency
degradation due to high latencies titan a single context pro-

So .. ... ... cessor.
o o One reason for varying switch latency in our evaluation of
4multiple contexts is to explore different types of architectures.

A grid network, for example, is expected to have a much
S,-o 4C~ol*X larger latency than a crossbar switch. At the same time the

20 L.. 2 Contm ........ higher latencies cal correspond to larger imultiprocessors, As=--- I CW"GoI

1o . ... ........ more processors are added to a parallel umachine. tile latencies

00 ; I 1 t increase dtle to deeper networks or -,nore complex swiches.
0 2 4 6 a 10 12 14 1 Larger latencies present a greater opportunity for mithiple

Switch .atency (bus cycle) contexts, because lie single context effciency is Iower, At
the sanie time we note that it bt still possible 1o achieve \-try

Fi-.ire 10: LocusRoute: (ottext Switch Overlhend L6 high elficiencies with jnust a few contexts, gor exaiiple, willh
("yci-s tAIternativly multiplexor emidd be us,| !n s\'ith bein'.tm

tuhtl Iplh. pipeline s!ate rn pies,.



a switch latency of 16 cycles. laencies are oi the order of 50 5 Related- WAork
and 31 c'ycle.' for reads and writes respectively (see Section
3). A network large enough to have his high a latency could The idea of mtuhiple hardware contexts per processor in itself
veil stupport several httndred processors. Vet procesor effi- is not new. [in this .ection we discuss how our approach differs

ciencies -tav high for this latency (61i' for MP.ID. 59t)' for from earlier proposals and present some advantages and di-
P-Thor and 94'/ for LocusRontet. The point is that even as advantages. We begin With tIe Alto personal computer from
ntltiproce,,ors grow and latencies increase. processors with Xerox [21] which provided multiple hardware microcode-level
just a few contexts achieve very good utilization. contexts. allowing the CPU to be shared between the instruc-

tion set interpreter and the I/O devices. The contexts were
statically assigned to devices and were not available to gen-

4.4 XVlen. to Switch Contexts eral user processes, The aim of the multiple contexts was to

make the power of the proces.or readily available for time[deally,. on~e woutld like to .switch contexts whenever the con- cricl/Opcein.atsthts rqett'(leaedo
critical /e processingt a task that is frequently delegated to

'ext .witch overhead is le-s than Lte laternc of the operation separate processors in more recent designs. Unlike our moti-
n fometer coetionshe machiae vation. the issue was not to hide memory latency from a very

longer or horter depending on thecon-estion in the machine, fast processor.
antt there i, no easy way to predict how long a given operation
vil! take. Wr thus chooe the easiest context switch criterion: The HEP multiprocessor from Denelcor [19] also provided
switch on any operation that requires a main memory access. multiple hardware contexts per processor. Unlike the Alto.

either in rite Name cluster or remotely. Switching only on the contexts were available to arbitrary user processes. The

,Stnote operatiois requires extra ikardware. but is a feasible processes shared a large set of registers and on each cycle an

alternative if context switch overhead is relatively high. If a instruction from a different process was executed. A mini-

context switch iake 16 cycles, and local operations also take mum of 8 active processes (those processes that are not wait-

ol the order of 16 cycles to complete. it does not make sense ing for a memory reference to complete) were needed to keep

to initiate a context svitch on every iocal operation. the execution pipeline full. The HEP machine tolerated mem-

Two of the applications had frequent memory accesses. but ry latency well. but its main drawback was that a single
process could get at most 1/8 of the pipelined processor. InLocusRoute processes [had long streaks cf execrng out of order to keep the pipeline full. a large number of processes

the cache. n order to prevent one context from hogging a were needed. This is in stark contrast to modern pipelined

particular processor we introduce a watchdog counter that processors [6,141 where a single process almost fully utilizes
pre-empts tite current context after 1000 cycles. This ensures processors[1 we ane procem ful utlze
tat no context r for longer than i cycles at a the pipelined processor. Now the HE scheme would not be
ttus allowing ad contexts on a. articuar processor to make a problem if all applications could be split into an arbitrarily

large number of processes. However. this is often not possible
progress. in practice as there may not be enough intrinsic parallelism

in the application [7). or because doing so greatly increases

4.5 Applications the amount of overhead.

More recently. Iannucci [11] has proposed using multi-
The three applications exhibited very different behavior. Lo- pie contexts for his hybrid data-flow/von Neumann machine.
cusRoute and P-Thor have relatively little global traffic, Each processor consists of a hardware queue of enabled con-
whereas .MP3D has a lot. While 1.8%, of LocusRoute instruc- tinuations. The continuations are very small in size (contain-
tions cause references to shared data. 14is number is close to ing just the program counter and the frame base-register}.
I2'7. for .IP3D. This explains why the run-lengths presented and the hardware can switch between them in a single cycle.
in Section 3 are so different for the three applications. At the However. to make this single cycle switch possible. processor
came time LocusRoute has very good caching behavior and registers are not saved on a context switch. Consequently.

;ery little interference between processes. Thus LocusRoute the software is structured so that it does not rely on reg-
achieves very high efficiencies (around 90V,). even with sin- isters being valid between potential context switch points.
gle context processors (see Figures 8-10). Very little can be The switch points are synchronizing references, where a read
gained by adding extra contexts. to a location tagged empty results in that continuation being

P-Thor achieves 50-70'Z utilization with single contexts suspended. In our view. the disadvantages of Iannucci', ap-
(kee Figures 5-7). This can be boosted effectively by adding proach are the following. First. processes can not make full

more contexts. Not only is efficiency increased as more con- use of the register sets. given that the run-lengths (the num-

texts are added. hilt tlie processors also become more immune ber of instructions executed between switch points) are very

to the effect of high latency operations. This is seen by the small (11] and registers are not preserved in between, We
.preading of the 'curves as the latency increases, believe that extensive use of registers is absolutely critical to

the performance of modern processors (6]. Second, a proces.
.:IPD h;i a large amount of global traffic. When thle sor that supports a large number of continuatious (contexts)

'witch latency increases, the switch becomes the bottleneck in hardware. keeps track of which ones are enabled and uses
and it limit.- the gainis achieved by multiple contexts. While a complex criterion for deciding which continuation to issue
,pone perforitiance gain is achieved. the relative beneht of the next itstruction from [1h. i c h'ery complicated, We e-

nlrliple rntexts is greater for lower latencies. Note hlow tile lieve such a processor will have a significantly more complex
different context linres converge a., the switch latency icrea s pipeline and mtuch larger area titan a simple RISC proces
i Figti res j and :. sor. Consequently. tile cycle time of suich a tnachine 'othd be

slower than that of modern RISC' processor,, Thts the hy-
brid machine has to make up the large factor 1ihtleit loses ir
con vettional microprocessors, before it becomes, competiti'e
Oil tle ot her hand, tile scheme tha. we proposke doe %ot kaoe



an% t tin-, over modern iISC processors. Lt fact. it is possible' point ALUs. Ftrtheimore. iamch new processor needs an extra
to :ake multiple commerciall v available RISC processor chips port to the network, or to th; bus that it is placed on. The
le.g..'Motorola 4X01l1 processor and cache chips) and connect extra port increases the depth of the network, or the loading
them .-o ;. to simulate multiple contexts. on the bus. thus increasing the latency. Several contexts per

We now consider the MASA architectu re proposed bY Bert processor can share these expensive resources, thus making
Halstead l]. In this architecture each processor has a fixed more efficient use of them.
minher of hardware tr.i" framre-. Each task frame is capable Another question that arises is how the multiple contexts

of ;iorinz a complete process context and consists of a set should be implemented. Tite multiple contexts do not neces-
of auxiliary registers (like the program counter) and a set of sarily have to be implemented on a single chip. In the case
general !virpo-,e reimters. Since the number of process-s may where the size of each processing itode is small, on the order
exceed the number of tcLk frames. the process contexts are of a few chips [9]. we need to have several contexts on a sin-
allowed to overflow into itiemory.7 On each cycle, a context gle chip using duplicated register sets. However. having to
in tie e. abled or 'redq .tate may issue an instruction. IHow- design a special processor for a given architecture makes that
ever. once a proce., issues an instruction, it can not issue architecture less practical. So for larger processing nodes. for
another instruction until the previous instruction has com- example where each processor occupies a whole board. it may
pleted. Thius. in its current form. a process on MASA can be quite feasible to use separate processor chips for the differ-
ge oily 1/4 1 iiver-e of pipelite depth) of the pipelined pro- ent contexts. While simplifying the hardware design effort.
ce-,or'.- performance.. \ discussed above for HEP. this is a this approach duplicates not just the register set but all of
major drawback. Ialstead and group recognize it [8] and are the data path and control as well?

exploring ways to remove this restriction. There are some software issues to he resolved. it partic-

Wo. now discuss a more subtle but fundamental difference ular. how do you choose which processes to put on a single
bet weeit the lannucci amid Halstead schemes and our scheme. processor? Since the progress of contexts on anry one proces-
In our scheme. tIre sole purpose of the multiple hardware sor is mutually exclusive, the correct placement of processes
contexts is to mitizate the neative effects of memory latency. on processors may be important. If a given program sec-
The number of hardware contexts needed for a particular ma- tion requires several contexts to be active in order to make
chine is fixed aid depends mainly on the expected cache hit progress. it is best to place these on separate processors.
ratio and tie memory latency '.for that architecture. In the
lannucci arid Halstead schemes. the context mechanism is in-
-tead made to serve two purposes at the same time. It is 7 Conclusions
used to mak memory latency as in our scheme. but it is also
ried as a hardware task queue. Thus when a parallel subtask In scalable multiprocessor architectures, processors with a
is created. it manifests itself as a new context that is then small fixed number of contexts can achieve substantially
managed and scheduled by the hardware. Since the number greater efficiencies than single context processors. In some
of parallel subtasks can be arbitrarily large. mechanisms are cases efficiencies increased 65% with two contexts and 100%necesed efficiencies increased 6verwith twoccontexts and.1t0%
needied and provided to handle overflow of contexts. Also, the with four contexts. Best improvements are found in archi-
number of contexts that are needed is large. lIn our scheme. tectures with high latency operations and low context switch
the issue of subtask management is completely separated and overheads. Such high latency operations are to be expected
is handled in software. This permits great flexibility. includ-
in- the possibility to f.chedule tasks in a manner similar to

can be achieved by having a small fixed number of contextsthe Iannucci atid Haisread proposals, if a particular appli- in hardware and by using a simple switch criterion: the cache

cation so warrants.' Thus instead of using full/empty bits miss.

and hardware queuing in I-structure memory [10]. we may
simulate full/empty bits in software aad switch to a different One important difference between our context switch

ubtask if a piece of data is not ready. It is not obvious which scheme and those proposed in [8.11,19] is that in our scheme
scheme works better. We will be able to tell only when such the context switch mechanism is separated from the sub-
machines actually get built, task management mechanism. This makes for simpler and

faster hardware and allows greater flexibility and application-
dependent performance tuning.

6 Discussion We are currently working on more detailed simulations, in-
cluding the effects of finite caches and cache contention when

This section contains tie discussion of several topics that re- a miss is satisfied from memory. We are also looking fur-

la-e to tie evaluation of multiple contexts as presented in this ther into the issues and details of implementing our multiple

paper. context scheme.

Oie question that we retst ask is. what are the real ad-
vanta-e. of having multiple contexts? Since processors are 8 Acknowledgements
cheap. why riot simply have a larger number of processors
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